HRI 연구에도 도움이 될만한 자료여서 테스트 해보기 시작했다. 시작할 땐 이렇게 오래걸릴거라곤 꿈에도 몰랐지..
GPU: Nvidia GeForce GTX 1080Ti
아래는 설치 순서이다. 내가 지금 쓰는 환경에 맞춘것이어서 버전 달라지면 또 모른다...
1. Upgrade and update Ubuntu
$ sudo apt-get update
$ sudo apt-get upgrade
2. Install Nvidia graphic driver
$ sudo add-apt-repository ppa:graphics-derivers/ppa
$ sudo apt-get update
$ sudo apt-get install nvidia-396
3. Install Anaconda2
download: https://www.anaconda.com/download/#linux
$ bash Anaconda-latest-Linux-x86_64.sh
$ source /home/[user name]/.bashrc
4. Install CUDA9.2
download: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
$ sudo sh cuda_9.2.148_396.37_linux.run
*DO NOT INSTALL NVIDIA DRIVER DURING INSTALLATION
5. Test CUDA samples
build the sample files: $ make
test files
6. Install cuDNN v7.1.4 for CUDA 9.2
download runtime library, developer library, code samples and user guide (Deb): https://developer.nvidia.com/rdp/cudnn-download
install runtime library: $ sudo dpkg -i libcudnn7_7.1.4.18-1+cuda9.2_amd64.deb
install developer library: $ sudo dpkg -i libcudnn7-dev_7.1.4.18-1+cuda9.2_amd64.deb
install code samples and user guide: $ sudo dpkg -i libcudnn7-doc_7.1.4.18-1+cuda9.2_amd64.deb
7. Install Caffe2 from source
refer this link: https://caffe2.ai/docs/getting-started.html?configuration=compile
1) Install Dependencies
2) Install msgpack and argparse
3) Download pytorch: https://github.com/pytorch/pytorch
4) $ cd pytorch
5) $ git submodule update --init
6) $ mkdir build && cd build
7) $ cmake ..
8) $ sudo make install
9) set PYTHONPATH and LD_LIBRARY_PATH
$ sudo gedit ~/.bashrc
export PYTHONPATH=/usr/local
export PYTHONPATH=$PYTHONPATH:/home/ys/pytorch/build
export PYTHONPATH=$PYTHONPATH:/home/ys/pytorch/caffe2
export PYTHONPATH=$PYTHONPATH:/home/ys/pytorch/caffe2/build
export LD_LIBRARY_PATH=/usr/local/lib
10) reboot the system and test installation
8. Follow instructions (https://github.com/facebookresearch/DensePose/blob/master/INSTALL.md)
Install COCO API
1) $ git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
2) $ cd cocoapi
3) $ make install
4) $python2 setup.py install --user
Download Densepose
1) $ git clone https://github.com/facebookresearch/densepose $DENSEPOSE
2) $ pip install -r densepose/requirements.txt
3) $ cd densepose && make
4) $ python2 $DENSEPOSE/detectron/tests/test_spatial_narrow_as_op.py
5) $ cd $DENSEPOSE && make ops
6) $ python2 $DENSEPOSE/detectron/tests/test_zero_even_op.py
Fetch densepose data
1) $ cd $DENSEPOSE/DensePoseData
2) $ bash get_densepose_uv.sh
3) $ bash get_DensePose_COCO.sh
4) $ bash get_eval_data.sh
Set the coco dataset
download coco dataset: http://cocodataset.org/#download
9. Test files
$ jupyter notebook
see notebooks/*.ipynb
끝!
'연구 > 머신러닝' 카테고리의 다른 글
human robot interaction 학습을 위한 intprim framework 설치 (0) | 2020.12.30 |
---|---|
역강화학습 IRL (Inverse Reinforcement Learning) (0) | 2020.12.15 |
머신러닝 공부를 본격적으로 해보자 (1) | 2020.11.13 |
self-supervised learning (0) | 2020.07.11 |
확률 그래프 모델 (probabilistic graphical model) (0) | 2020.07.10 |
댓글